Secondary Mitral Regurgitation Time to Re-think

Dr. Abdelmaksoud Elganady MD Associate Professor of Cardiology Faculty of Medicine Al-Azhar University Cairo, Egypt Saturday, 16th October 2021

The Mitral Valve and Left Ventricle

Secondary Mitral Regurgitation is a Disease of the Left Ventricle

Secondary Mitral Regurgitation Pathophysiology

Ischaemic CM

- Papillary muscle displacement
- Tethered Chordae
- Restricted leaflet closure
- Annular dilation

changes in LV geometry and function

Dilated CM

Secondary Mitral Regurgitation Prognosis

Source	Log Risk Ratio (SE)	SMR	No SMR	Risk Ratio (SE)	Favors No SMR	Favors Any SMR	Weight, %
SMR Present vs Absent at Echoo	cardiography					1	
Agricola et al, ²⁶ 2011	0.8538 (0.3182)	128	70	2.35 (1.26-4.38)			4.3
Aronson et al, ⁸ 2006	1.0158 (0.1977)	548	642	2.77 (1.88-4.08)			6.7
Barra et al.27 2012	0.3507 (0.1638)	358	438	1.42 (1.03-1.96)			7.2
Calafiore et al,7 2008	0.0296 (0.1226)	1421	2805	1.03 (0.81-1.31)		+	7.9
Engström et al, 30 2010	0.5365 (0.2636)	121	26	1.71 (1.02-2.87)			5.6
Faris et al, ³¹ 2002	0.5878 (0.2513)	NA	NA.	1.80(1.10-2.95)			5.8
Grigioni et al. ² 2001	0.6313 (0.2165)	194	109	1.58(1.23-2.87)			6.3
MacHaalarry et al, 43 2014	1.8183 (1.5567)	79	95	6.16 (0.29-130.24)	· · · · · · · · · · · · · · · · · · ·	+ • • • • • • • • • • • • • • • • • • •	0.4
Nesković et al. ⁴⁶ 1999	0.9060 (0.6158)	81	50	2.47 (0.74-8.27)			2.1
Pastorius et al. ⁴⁸ 2007	0.4511 (0.1371)	289	420	1.57 (1.20-2.05)		-	7.7
Trichon et al, 55 2003	0.2070 (0.0433)	1156	901	1.23(1.13-1.34)		-	8.7
Upadhyay et al.,55 2015	0.2852 (0.1404)	368	71	1.33 (1.01-1.75)		-	7.6
Subtotal (95% CI)		4743	5627	1.56 (1.31-1.85)		•	70.7
Heterogeneity: $\tau^2 = 0.05$; $\chi^2 =$	3.3.07; (P<.001); 1 ² =675	se				1	
Test for overall effect: Z=5.08	8, (P<.001)					1	
SMR Present vs Absent at Ventr	iculography					1	
Hickey et al, ³⁶ 1988	0.2231 (0.0746)	2443	9405	1.25 (1.08-1.45)		-	8.5
Lehmann et al.41 1992	1.3063 (0.6189)	27	179	3.70 (1.10-12.45)			2.1
Mallidi et al, ⁹ 2004	-0.0429 (0.1420)	163	326	0.96 (0.73-1.27)		•	7.6
Pellizzon et al,3 2004	1.7297 (0.2303)	250	1726	5.64 (3.59-8.86)			6.1
Tcheng et al, 52 1992	1.8160 (0.2947)	255	1215	6.15 (3.45-10.95)			5.1
Subtotal (95% CI)		3138	12851	2.58 (1.29-5.17)			29.3
Heterogeneity: $t^2 = 0.54$; $g^2 =$	73.55; (P<.001); /2=953	6				1	
Test for overall effect: Z=2.67	7. (P=.008)					1	
Total (95% CI)		7881	18478	1.79 (1.47-2.18)		•	100.0
Heterogenity: $\tau^2 = 0.12$; $\chi^2 = 1$	107.97; (P=.001); / ² =85	76				1	
Test for overall effect: 2=5.71	1, (P<.001)					1	
Test for subgroup differences:	x ² =1.89; (P=.17); P ² =4	7.2%				3 ·	
					0.001 0.1	1 10	1000
					Eisk Rat	lio (95% CI)	

Meta-analysis of 17 studies, 26,359 patients Sannino et al JAMA Cardiol, 2017 oct 1;2(10):1130-1139 RR, 1.96; 95% CI, 1.67-2.31; P < .001

It was unknown whether intervention to reduce secondary mitral regurgitation improved the prognosis!

Surgery for Patients with Secondary Mitral Regurgitation

Surgery for Patients with Secondary Mitral Regurgitation

Mechler RE et al.J NEJM 2016;374(20):1932-1941

ORIGINAL ARTICLE

Mitral-Valve Repair versus Replacement for Severe Ischemic Mitral Regurgitation

Michael A. Acker, M.D., Michael K. Parides, Ph.D., Louis P. Perrault, M.D.,
Alan J. Moskowitz, M.D., Annetine C. Gelijns, Ph.D., Pierre Voisine, M.D.,
Peter K. Smith, M.D., Judy W. Hung, M.D., Eugene H. Blackstone, M.D.,
John D. Puskas, M.D., Michael Argenziano, M.D., James S. Gammie, M.D.,
Michael Mack, M.D., Deborah D. Ascheim, M.D., Emilia Bagiella, Ph.D.,
Ellen G. Moquete, R.N., T. Bruce Ferguson, M.D., Keith A. Horvath, M.D.,
Nancy L. Geller, Ph.D., Marissa A. Miller, D.V.M., Y. Joseph Woo, M.D.,
David A. D'Alessandro, M.D., Gorav Ailawadi, M.D., Robert E. Michler, M.D.,
Timothy J. Gardner, M.D., Patrick T. O'Gara, M.D., Robert E. Michler, M.D.,

Death Α

MV replacement 125 B Composite Cardiac End Point

125

The Leaflet Approximation Technique Replication of Surgical Technique

ALFIERI -SURGICAL

MITRACLIP-TRANSCATHETER

Mitral Clip Safety Profile Everest II RCT

Rates of 30-day MAE

Feldman et al. N Engl J Med 2011

Mitral Clip Safety Profile COAPT RCT

Stone et al. N Engl J Med 2018

Percutaneous Repair with the MitraClip Device for Severe Secondary Mitral Regurgitation

MITRA-FR

Percutaneous Repair with the MitraClip Device for Secondary MR Multicenter, randomized, open-label, phase 3 trial in 304 patients with symptomatic heart failure, ↓ LVEF (15-40%) and severe secondary MR (EROA >20 mm², RV 30 ml/beat) conducted in France (37 centers)

Randomize 1:1

GDMT alone

N=152

MitraClip + GDMT N=152

Primary endpoint: all-cause death + unplanned hospit. for HF at 12m

Primary composite endpoint (99% follow-up)

MITRA-FR – MITRACLIP VS MEDICAL TREATMENT FOR SECONDARY MR: PRIMARY ENDPOINT AND SUBGROUPS

Obadia JF et al. N Engl J Med 2018

Primary Endpoint All-Cause Death and Re-hosp for Heart Failure @ 1 Year

	Percut.	repair	Medical	c eacheric			
Subgroup	Events/	N (%)	Events/h	4 (%)	OR (95% CI)		P Value*
CENTRE SIZE							0.27
N <= 15 Randomized patients	33/73	(45.2)	35/73	(47.9)	0.90 (0.50, 1.70)		-
N 15 Randomized patients	50/77	(64.9)	43/78	(55.1)	1.50 (0.80, 2.90)		
AGE		(0.1.0)		(a.a			0.20
<# 75 Yr	52/100	(52.0)	39/93	(41.9)	1.50 (0.80, 2.60)		
> 75 Yr	31/50	(62.0)	39/58	(67.2)	0.80 (0.40, 1.80)		
GENDER		(142.4)		100.000	and decise thereit		0.55
Maie	67/120	(55.8)	53/106	(50.0)	1.30 (0.70, 2.10)		
Female	16/30	(53.3)	25/45	(55.6)	0.90 (0.40, 2.30)		
NYHA				0.000			0.73
Class II	26/56	(45.4)	17/44	(38.6)	1.40 (0.60, 3.10)		
Class IIVIV	57/94	(60.6)	61/107	(57.0)	1,20 (0,70, 2,00)		
ISCHEMIC CARDIOMYOPATHY				1			0.63
Yes	49/94	(52.1)	42/84	(50.0)	1.10 (0.60.2.00)		_
No	34/58	(60.7)	35/66	(53.0)	1.40 (0.70, 2.80)	·	
PULMONARY ARTERY PRESSURE		(a.a.,)		(111)			0.58
< 50 mmHg	23/53	(43.4)	18/44	(40.9)	1.10 (0.50, 2.50)		
≥ 50 mmHg	49/73	(67.1)	51/88	(58.0)	1.50 (0.80, 2.80)		
ATRIAL FIBRILLATION							0.37
Yes	30/49	(61.2)	24/47	(\$1.1)	1.50 (0.70, 3.40)		
B1-	48.004	150.51	E1.00	101.01	1.00.01.60.1.70		
PREVIOUS HOSPIT FOR CHF							0.06
< 2	53/95	(55.8)	38/87	(43.7)	1.60 (0.90, 2.90)		
22	30/55	(54.5)	40/62	(64.5)	0.70 (0.30, 1.40)		
< 15 mg/dl	31/75	(41.3)	43/85	(50.6)	0.70 (0.40, 1.30)		
≥ 15 mg/dl	51/72	(70.8)	34/65	(52.3)	2.20 (1.10, 4.50)		
HEMOGLOBINE							0.59
< Median	43/75	(57.3)	33/65	(50.8)	1.40 (0.70, 2.60)		
≥ Median	38/72	(52.8)	42/80	(52.5)	0.90 (0.50, 1.80)		-
LVEF							0.99
< 30%	21/35	(60.0)	27/48	(56.3)	1.20 (0.50, 2.80)		
≥ 30%	62/115	(53.9)	51/102	(50.0)	1.20 (0.70, 2.00)		-
TRICUSPID REGURGITATION							0.93
Mid	60/110	(54.5)	60/118	(50.8)	1.20 (0.70, 2.00)		-
Moderate/Severe	19/29	(65.5)	14/23	(60.9)	1.20 (0.40, 3.80)		
LV TELEDIASTOLIC DIAMETER							0.84
< 65 mm	21/43	(48.8)	21/45	(48.7)	1.10 (0.50, 2.50)		
≥ 65 mm	62/107	(57.9)	56/105	(53.3)	1.20 (0.70, 2.10)		
MITRAL REGURGITANT ORIFICE							0.85
< 30 mm2	37/77	(48.1)	39/80	(48.8)	1.00 (0.50, 1.80)		-
30-40 mm2	28/44	(63.6)	24/51	(47.1)	2.00 (0.80, 4.50)		
> 40 mm2	18/29	(62.1)	15/20	(75.0)	0.50 (0.20, 1.90)		-
OVERALL	83/150	(55.3)	78/151	(51.7)	1.20 (0.70, 1.80)		0.53
						0.05 0.5 1 1	5 210 2
						0.25 0.5 1 1.	2 41 9 3

<--Percut. repair better-- --MT better-->

Mitral Regurgitation Grade Evolution in Both Groups Mitra-FR

Q: Is percutaneous correction of secondary mitral regurgitation by mitral clip safe and effective?

YES

Q: Does correction of secondary mitral regurgitation change the prognosis?

Echocardiographic Criteria for the Definition of Severe Mitral Regurgitation

	Aortic regurgitation	Mitral regurgitation	Tricuspid regurgitation	
Qualitative				
Valve morphology	Abnormal/flail/large coaptation defect	Fail leaflet/ruptured papillary muscle/ large coaptation defect	Abnormal/flail/large coaptation defect	
Colour flow regurgitant jet	Large in central jets, variable in eccentric jets*	Very large central jet or eccentric jet adhering, swirling, and reaching the posterior wall of the left atrium	Very large central jet or eccentric wall impinging jet*	
CW signal of regurgitant jet	Dense	Dense/triangular	Dense/triangular with early peaking (peak <2 m/s in massive TR)	
Other	Holodiastolic flow reversal in descending aorta (EDV >20 cm/s)	Large flow convergence zone*	-	
Semiquantitative				
Vena contracta width (mm)	>6	≥7 (>8 for biplane) ⁶	≥7³	
Upstream vein flow ²	-	Systolic pulmonary vein flow reversal	Systolic hepatic vein flow reversal	
Inflow	-	E-wave dominant ≥1.5 m/s ^d	E-wave dominant ≥1 m/s*	
Other	Pressure half-time <200 ms ^r	TVI mitral/TVI applie = 14	PISA radius >9 mm [€]	
Quantitative		Primary Secondary		
EROA (mm²)	≥30	≥40 ≥20	≥40	
R Vol (ml/beat)	≥60	≥60 ≥30	≥45	
+ enlargement of cardiac chambers/vessels	LV	LV, LA	RV, RA, inferior vena cava	

The COAPT Trial

Cardiovascular Outcomes Assessment of the MitraClip Percutaneous Therapy for Heart Failure Patients with Functional Mitral Regurgitation

A parallel-controlled, open-label, multicenter trial in 614 patients with heart failure and moderate-tosevere (3+) or severe (4+) secondary MR who remained symptomatic despite maximally-tolerated GDMT

Primary endpoints:

Effectiveness: All HF hospitalizations through 24 mos, analyzed when last pt completes 12-mo FU Safety: Freedom from device-related complications through 12 months

24-Month Death or HF Hospitalization

V

Subgroup	MitraClip + GDMT	GDMT alone	HR [95% CI]	HR [95% CI]	P [Int]
All patients	45.7% (129)	67.9% (191)	·	0.57 [0.45, 0.71]	
Age (median) ≥74 years (n=317) <74 years in=297)	52.1% (78) 37.8% (51)	70.2% (100) 65.3% (91)		0.65 [0.43, 0.88] 0.47 [0.33, 0.66]	0.13
Female (n=221) Nale (n=393)	43.2% (39) 47.1% (90)	59.4% (66) 73.0% (125)	· · · · · · · · · · · · · · · · · · ·	0.60 [0.40, 0.89] 0.54 [0.41, 0.71]	0.76
Etiology of cardiomyopathy Ischemic (n=373) Non-ischemic (n=241) Prior CRT	48.1% (84) 41.1% (45)	70.0% (116) 65.2% (75)		0.57 [0.43, 0.76] 0.54 [0.37, 0.78]	0.79
Yes (n=224) No (n=390)	50.2% (55) 42.9% (74)	68.4% (69) 67.4% (122)	· · · · · · · · · · · · · · · · · · ·	0.62 [0.44, 0.89] 0.53 [0.39, 0.71]	0.54
HF hospitalization within the prior ye Yes (n=407) No (n=207) Baseline NYHA class	ar 44,7% (86) 47,6% (43)	67.9% (126) 67.8% (65)	,,,,,,,,	0.56 [0.42, 0.73] 0.59 [0.40, 0.86]	0.79
l or II (n=240) II (n=322) IV (n=51)	41.1% (50) 46.6% (67) 68.3% (12)	66.9% (65) 65.3% (99) 84.4% (26)		0.56 [0.39, 0.81] 0.61 [0.44, 0.83] 0.56 [0.23, 1.12]	0.92
STS replacement score ≥8% (n=262) <8% (n=352) Surgical disk status*	54,1% (65) 39,2% (64)	71,4% (88) 65.0% (103)		0.64 [0.46, 0.86] 0.51 [0.37, 0.70]	0.41
High (n=423) Not high (n=188)	49.7% (95) 35.8% (32)	71.5% (140) 58.7% (51)	p ine a	0.58 [0.45, 0.75] 0.51 [0.33, 0.80]	0.69
Baseline MR grade 3+ (n-320) 4+ (n=293) Baseline LVEF	37.5% (51) 53.4% (78)	65.3% (100) 71.4% (91)		0.48 [0.34, 0.67] 0.62 [0.45, 0.83]	0.29
≥30% (median; n=301) <30% (median; n=274)	44.1% (62) 46.4% (56)	61.2% (85) 77.8% (99)	······································	0.60 [0.43, 0.84] 0.46 [0.33, 0.64]	0.32
>40% (n=103) ≤40% (n=472)	49.7% (22) 44.2% (96)	56.2% (27) 71.9% (157)		0.67 [0.33, 1.17] 0.50 [0.39, 0.65]	0.31
Baseline LVEDV (median) ≥181 mL (r=238) <181 mL (n=237)	48.9% (43) 41.5% (54)	68.0% (92) 69.5% (92)		0.58 [0.42, 0.80] 0.48 [0.34, 0.67]	0.42
KM time-to-first event rates *Central eligibility committee assessm	en;	0.2	0.5 1 1.5 Favors MitraClip + GDMT Favors GD	2.5 MT alone	

All-Cause Mortality

Mortality and HF Hospitalization

TEER with the MitraClip was:

- Safe.
- Provided durable reduction in MR.
- reduced the rate of HF hospitalizations.
- Significant reduction in all cause mortality.
- Improved quality-of-life and functional capacity. during 24-month follow-up.
- MitraClip is the first therapy shown to improve the prognosis of patients with HF by reducing secondary MR due to LV dysfunction.

ACC/AHA Guidelines: Chronic Secondary MR

Grade	Definition	Valve Anatomy	Valve Hemodynamics*	Associated Cardiac Findings	Symptoms
A	At risk of MR	 Normal valve leaflets, chords, and annulus in a patient with coronary disease or cardiomyopathy 	 No MR jet or small central jet area <20% LA on Doppler Small vena contracta <0.30 cm 	 Normal or mildly dilated LV size with fixed (infarction) or inducible (ischemia) regional wall motion abnormalities Primary myocardial disease with LV dilation and systolic dysfunction 	 Symptoms due to coronary ischemia or HF may be present that respond to revascularization and appropriate medical therapy
В	Progressive MR	 Regional wall motion abnormalities with mild tethering of mitral leaflet Annular dilation with mild loss of central coaptation of the mitral leaflets 	 ERO <0.40 cm²† Regurgitant volume <60 mL Regurgitant fraction <50% 	 Regional wall motion abnormalities with reduced LV systolic function LV dilation and systolic dysfunction due to primary myocardial disease 	 Symptoms due to coronary ischemia or HF may be present that respond to revascularization and appropriate medical therapy
С	Asymptomatic severe MR	 Regional wall motion abnormalities and/or LV dilation with severe tethering of mitral leaflet. Annular dilation with severe loss of central coaptation of the mitral leaflets 	 ERO >0.40 cm² † Regurgitant volume ≥60 mL Regurgitant fraction ≥50% 	 Regional wall motion abnormalities with reduced LV systolic function LV dilation and systolic dysfunction due to primary myocardial disease 	 Symptoms due to coronary ischemia or HF may be present that respond to revascularization and appropriate medical therapy
D	Symptomatic severe MR	 Regional wall motion abnormalities and/or LV dilation with severe tethering of mitral leaflet Annular dilation with severe loss of central coaptation of the mitral leaflets 	 ERO ≥0.40 cm²† Regurgitant volume ≥60 mL Regurgitant fraction ≥50% 	 Regional wall motion abnormalities with reduced LV systolic function LV dilation and systolic dysfunction due to primary myocardial disease 	 IIF symptoms due to MR persist even after revascularization and optimization of medical therapy Decreased exercise tolerance Exertional dyspnea

*Several valve hemodynamic criteria are provided for assessment of MR severity, but not all criteria for each category will be present in each patient. Categorization of MR severity as mild, moderate, or severe depends on data quality and integration of these parameters in conjunction with other clinical evidence. †The measurement of the proximal isovelocity surface area by 2D TTE in patients with secondary MR underestimates the true ERO because of the crescentic shape of the proximal convergence.

Diverging Guidelines: Chronic Secondary MR

	2017 ESC 🤉	guidelines	2017 AHA/ACC focused update	e 2017 ASE guidelines
Semi-quantitative				
criteria				
Vena contracta (mm)	≥7 (>8 for	biplane*)	-	≥7
Pulmonary vein	Pulmonary vein sys	stolic flow reversal	-	Pulmonary vein systolic flow reversal
Inflow	E-wave dominant ≥1.5m/s			-
Other	TVI mitral/TVI sortic >1.4		-	Central large jet > 50% of LA area
Quantitative criteria	Primary	Functional		
EROA (mm ²)	≥40	≥20	≥40	≥40 (or 30-39 with 3 severity criteria or elliptical orifice)
PISA radius			-	≥ 1.0 cm at Nyquist 30-40 cm/s
Regurgitant volume (ml)	≥60	≥30	≥60	≥60
Regurgitant fraction (%)	-		≥50	≥50

Traditional approaches to the characterization of secondary mitral regurgitation have largely ignored the critical importance of the left ventricle

Patients with secondary mitral regurgitation represent a heterogenous group, which can be usefully <u>subdivided</u> based on understanding that the **EROA** is dependent on the **LVEDV**

Disproportionate vs Proportionate Severe Secondary MR

EROA vs LVEDV at LVEF 30%, RF 50%

LV End-Diastolic Volume (mL)

Trials of HF Therapies and Secondary MR Benefit from MR reduction

Left ventricular end-diastolic volume (ml)

Mortality and HF Hospitalization at One Year

Group 1: EROA ≤ 0.30 cm² <u>AND</u> LVEDVi > 96 mL/m² (N=56)

Mortality and HF Hospitalization at One Year

Group 2: EROA > 0.30 <u>OR</u> LVEDVi \leq 96 mL/m² (N=492)

Three Patients with EROA of 30 mm2

LVEF 22% LVEDV 310 mL GLS -6.8% LVEF 36% LVEDV 197 mL GLS -8.4% LVEF 60% LVEDV 140 mL GLS -20.3%

Three Patients with EROA of 30 mm2

LVEDV 310 mL GLS -6.8% LVEF 36% LVEDV 197 mL GLS -8.4% LVEF 60% LVEDV 140 mL GLS -20.3%

Characterization of MR as proportionate or disproportionate to LVEDV appears to be critical to the selection of an optimal treatment for patients with chronic HF and systolic dysfunction

Trans-catheter Edge to Edge Repair **(TEER)** vs Trans-catheter Mitral Valve Replacement **(TMVR)** for Secondary Mitral Regurgitation

Study Design

TEER (trans-catheter repair)

TMVI (Trans-catheter replacement)

All-cause Death

Universitäres Herz- und Gefäßzentrum UKE Hamburg

ESC CONGRESS ZUZI THE DIGITAL EXPERIENCE

-

All-cause Death

All-cause Death

Combined Endpoint

All-cause Death or HF Hospitalisation

Universitäres Herz- und Gefäßzentrum UKE Hamburg

_

Subgroup Analysis

All-cause Death or HF Hospitalisation

Universitäres Herz- und Gefäßzentrum UKE Hamburg

Subgroup			HR (95% CI)	p-value
Age	<75 years ≥75 years		0.82 (0.49, 1.37) 0.83 (0.54, 1.29)	0.45 0.41
Sex	Female Male		0.68 (0.40, 1.18) 0.93 (0.61, 1.41)	0. 17 0. 72
LVEF	<30% ≥30%		0.76 (0.30, 1.91) 0.84 (0.59, 1.20)	0.54 0.34
LVEDV	<180 mL ≥180 mL		0.85 (0.53, 1.37) 0.82 (0.48, 1.39)	0.51 0.45
EROA	<0.4 cm² ≥0.4 cm²		0.81 (0.52, 1.27) 0.88 (0.41, 1.86)	0.36 0.72
Mean MVPG	≥4.5 mmHg <4.5 mmHg		0.93 (0.64, 1.36) 0.50 (0.15, 1.62)	0.71 0.22
COPD	Yes No		0.87 (0.38, 1.99) 0.82 (0.57, 1.18)	0.74 0.29
Pulmonary hypertension PASP >50 mmHg	Yes No		0.71 (0.42, 1.17) 0.94 (0.60, 1.47)	0.18 0.78
RV dysfunction TAPSE <17 mm	Yes No		1.06 (0.68, 1.65) 0.62 (0.34, 1.12)	0.78 0.11
≥ moderate TR	Yes No		1.00 (0.65, 1.55) 0.65 (0.39, 1.08)	0.99 0.094
	0.	12 0.25 0.50 1.0 2.0 4.0	8.0	
	- Fa	avours IEEK Favours		

No difference between TEER and TMVI regarding •All-cause Death after 2 years. •Combined Endpoint after 2 years.

Perspective

Universitäres Herz- und Gefäßzentrum UKE Hamburg

Learning From Failure at the CUTTING-EDGE of Transcatheter Mitral Valve Therapies*

Alessandro Sticchi, MD,^a Fabien Praz, MD,^a David Reineke, MD,^b Stephan Windecker, MD^a

In this first report of the CUTTING-EDGE registry, the mortality and morbidity risks of MV surgery after TEER were not negligible, and only <10% of patients underwent MV repair.

These registry data provide valuable insights for further research to improve these outcomes.

Severe mitral regurgitation criteria based on 2D echocardiography (1)

	Primary MR	Secondary MR
Qualitative		
Mitral valve morphology	Flail leaflet, ruptured papillary muscle, severe retraction, large perforation	Normal leaflets but with severe tenting, poor leaflet coaptation
Colour flow jet area	Large central jet (>50% of LA) or eccentric wall impinging jet of variable size	Large central jet (>50% of LA) or eccentric wall impinging jet of variable size
Flow convergence	Large throughout systole	Large throughout systole
Continuous wave Doppler jet	Holosystolic / dense / triangular	Holosystolic / dense / triangular

2021 ESC/EACTS Guidelines for the management of valvular heart disease www.escardio.org/guidelines (European Heart Journal; 2021 – doi: 10.1093/eurheart/ehab395; European Journal of Cardio-Thoracic Surgery; 2021 – doi: 10.1093/ejcts/ezab389)

Severe mitral regurgitation criteria based on 2D echocardiography (2)

	Primary MR	Secondary MR
Semiquantitative		
Vena contracta width	≥7 (≥8 mm for biplane)	≥7 (≥8 mm for biplane)
Pulmonary vein flow	Systolic flow reversal	Systolic flow reversal
Mitral inflow	E-wave dominant (>1.2 m/s)	E-wave dominant (>1.2 m/s)
TVI mitral/TVI aortic	>1.4	>1.4

2021 ESC/EACTS Guidelines for the management of valvular heart disease www.escardio.org/guidelines (European Heart Journal; 2021 – doi: 10.1093/eurheartj/ehab395; European Journal of Cardio-Thoracic Surgery; 2021 – doi: 10.1093/ejcts/ezab389)

Severe mitral regurgitation criteria based on 2D echocardiography (3)

	Primary MR	Secondary MR
Quantitative		
EROA (2D PISA, mm ²)	≥40 mm ²	≥40 mm ² (may be ≥30 mm ² if elliptical regurgitant orifice area)
Regurgitant volume (mL/beat)	≥60 mL	≥60 mL (may be ≥45 mL if low flow conditions)
Regurgitant fraction (%)	≥50%	≥50%
Structural		
Left ventricle	Dilated (ESD ≥40 mm)	Dilated
Left atrium	Dilated (diameter ≥55 mm or volume ≥60 mL/m²)	Dilated

Adapted from Lancelotti et al., Eur Heart J Cardiovasc imaging (2013). DOI: 10.1093/ehjci/jet105 and Zoghbi et al., JAm Soc Echocardiogr (2017). DOI: 10.1016/j.echo.2017.01.007.

2021 ESC/EACTS Guidelines for the management of valvular heart disease www.escardio.org/guidelines (European Heart Journal; 2021 – doi: 10.1093/eurheartj/ehab395; European Journal of Cardio-Thoracic Surgery; 2021 – doi: 10.1093/ejcts/ezab389)

Recommendations on indications for mitral valve intervention in chronic severe secondary mitral regurgitation (1)

Recommendations	Class	Level
Valve surgery/intervention is recommended only in patients with severe SMR who remain symptomatic despite GDMT (including CRT if indicated) and has to be decided by a structured collaborative Heart Team.	T	в
Patients with concomitant coronary artery or other cardiac disease requiring	y treatm	ent
Valve surgery is recommended in patients undergoing CABG or other cardiac surgery.	Т	в
In symptomatic patients, who are judged not appropriate for surgery by the Heart Team on the basis of their individual characteristics, PCI (and/or TAVI) possibly followed by TEER (in case of persisting severe SMR) should be considered.	lla	с

2021 ESC/EACTS Guidelines for the management of valvular heart disease www.escardio.org/guidelines (European Heart Journal; 2021 – doi: 10.1093/eurheartj/ehab395; European Journal of Cardio-Thoracic Surgery; 2021 – doi: 10.1093/ejcts/ezab389)

Recommendations on indications for mitral valve intervention i chronic severe secondary mitral regurgitation (2)			() () ()	ESC ACTS
	Recommendations	Class	Level	
	Patients without concomitant coronary artery or other cardiac disease requi	iring trea	atment	
	TEER should be considered in selected symptomatic patients, not eligible for surgery and fulfilling criteria suggesting an increased chance of responding to the treatment.	lla	В	
	Valve surgery may be considered in symptomatic patients judged appropriate for surgery by the Heart Team.	llb	С	
	In high-risk symptomatic patients not eligible for surgery and not fulfilling the criteria suggesting an increased chance of responding to TEER, the Heart Team may consider in selected cases a TEER procedure or other transcatheter valve therapy if applicable, after careful evaluation for ventricular assist device or heart transplant.	llb	С	SCEVCLE

2021 ESC/EACTS Guidelines for the management of valvular heart disease www.escardio.org/guidelines (European Heart Journal; 2021 - doi: 10.1093/eurhearti/ehab395; European Journal of Cardio-Thoracic Surgery; 2021 - doi: 10.1093/ejcts/ezab389)

Conclusion

- SMR is a disease of the LV.
- Treat the LV dysfunction first with appropriate titration of medications known to improve survival in HFrEF.
- Consider MV intervention when severe MR persists after appropriate medical therapy, including CRT/PCI (COAPT-like patients).
- Patients in whom MR is the dominant lesion relative to LV dysfunction (Disproportionate SMR), appear to derive the largest benefit of MV intervention in terms of reduced mortality and HF hospitalization.

